login
A098560
Expansion of e.g.f. (1+4*x)/(1-4*x).
2
1, 8, 64, 768, 12288, 245760, 5898240, 165150720, 5284823040, 190253629440, 7610145177600, 334846387814400, 16072626615091200, 835776583984742400, 46803488703145574400, 2808209322188734464000, 179725396620079005696000
OFFSET
0,2
LINKS
FORMULA
a(n) = 2*4^n*n! - 0^n.
a(n+1) = 8*A034177(n).
a(n) - 4*n*a(n-1) = 0. - R. J. Mathar, Dec 21 2014
Sum_{n>=0} 1/a(n) = (exp(1/4)+1)/2. - Amiram Eldar, Feb 02 2023
MATHEMATICA
s=2; lst={1}; Do[s+=n*s+s; AppendTo[lst, s], {n, 2, 5!, 4}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn=20}, CoefficientList[Series[(1+4x)/(1-4x), {x, 0, nn}], x] Range[0, nn]!] (* or *) Join[{1}, Table[2*4^n n!, {n, 20}]] (* Harvey P. Dale, Jan 16 2012 *)
PROG
(PARI) for(n=0, 30, print1(if(n==0, 1, 2^(2*n+1)*n!), ", ")) \\ G. C. Greubel, Jan 17 2018
(Magma) [1] cat [2^(2*n+1)*Factorial(n): n in [2..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 14 2004
STATUS
approved