OFFSET
0,4
COMMENTS
Column 0 forms A002449, the number of different types of binary trees of height n. Row sums form A098540. Column 1 equals A098541. As a matrix, T satisfies [T^2](n,k) = T(n+1,k+1) for all n,k>=0, where [T^2] denotes the matrix square of T, with T(0,k)=[T^2](k,0) and T(k,k)=1 for all k>=0. This is a variant of triangle A078121.
FORMULA
T(n, 0) = A002449(n), T(n, n)=1 for n>=0; T(n, 1)=T(n, 0) for n>0.
EXAMPLE
Rows of T begin:
[1],
[1,1],
[2,2,1],
[6,6,4,1],
[26,26,20,8,1],
[166,166,140,72,16,1],
[1626,1626,1460,888,272,32,1],
[25510,25510,23884,16392,6256,1056,64,1],
[664666,664666,639156,479736,215696,46816,4160,128,1],...
Matrix square T^2 begins:
[1],
[2,1],
[6,4,1],
[26,20,8,1],
[166,140,72,16,1],
[1626,1460,888,272,32,1],...
showing that T^2 is the same as T after shifting left one column.
PROG
(PARI) T(n, k)=local(A, B, C, m); A=matrix(1, 1); A[1, 1]=1; for(m=2, n+1, B=A^2; C=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, C[i, j]=1, if(j==1, C[i, j]=B[i-1, 1], C[i, j]=B[i-1, j-1])); )); A=C); A[n+1, k+1]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 13 2004
STATUS
approved