This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098537 Expansion of (1+x)^(1/3)/(1+x-18*x^4)^(1/3). 2
 1, 0, 0, 0, 6, -6, 6, -6, 78, -150, 222, -294, 1374, -3462, 6558, -10662, 30894, -82374, 180222, -339558, 811374, -2082534, 4875774, -10149702, 22872750, -55797126, 133232766, -294821286, 660771438, -1558556070, 3711070590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Binomial transform is A098538. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA From Vladimir Kruchinin, Sep 06 2010: (Start) a(n) = Sum(b(j)*c(n-j,j,0,n), where: b(n) = if n=0 then 1 else Sum(Sum((if mod(n-4*k,3)=0 then binomial(k,(4*k-n)/3)*(-1)^((4*k-n)/3)*(18)^((n-k)/3) else 0)*(if k=m then (1/3)^k else m/k*(1/3)^k*Sum(binomial(i,k-m-i)*(-1/3)^(k-m-i)*binomial(i+k-1,k-1),i,1,k-m)),k,m,n),m,1,n), c(n)=if n=0 then 1 else (-1)^(n+1)*if n=1 then (1/3)^n else 1/n*(1/3)^n * Sum(binomial(k,n-1-k)*(-1/3)^(n-1-k)*binomial(k+n-1,n-1),k,1,n-1); (End) MATHEMATICA CoefficientList[Series[(1+x)^(1/3)/(1+x-18*x^4)^(1/3), {x, 0, 50}], x] (* G. C. Greubel, Jan 17 2018 *) PROG (Maxima) a(n):=sum(b(j)*c(n-j, j, 0, n); b(n):=if n=0 then 1 else sum(sum((if mod(n-4*k, 3)=0 then binomial(k, (4*k-n)/3)*(-1)^((4*k-n)/3)*(18)^((n-k)/3) else 0)*(if k=m then (1/3)^k else m/k*(1/3)^k*sum(binomial(i, k-m-i)*(-1/3)^(k-m-i)*binomial(i+k-1, k-1), i, 1, k-m)), k, m, n), m, 1, n); c(n):=if n=0 then 1 else (-1)^(n+1)*if n=1 then (1/3)^n else 1/n*(1/3)^n*sum(binomial(k, n-1-k)*(-1/3)^(n-1-k)*binomial(k+n-1, n-1), k, 1, n-1);  /* Vladimir Kruchinin, Sep 06 2010 */ (PARI) x='x+O('x^30); Vec((1+x)^(1/3)/(1+x-18*x^4)^(1/3)) \\ G. C. Greubel, Jan 17 2018 (MAGMA) Q:=Rationals(); R:=PowerSeriesRing(Q, 30); Coefficients(R!((1+x)^(1/3)/(1+x-18*x^4)^(1/3))); // G. C. Greubel, Jan 17 2018 CROSSREFS Cf. A098535. Sequence in context: A054641 A024731 A195504 * A276861 A131703 A329087 Adjacent sequences:  A098534 A098535 A098536 * A098538 A098539 A098540 KEYWORD easy,sign AUTHOR Paul Barry, Sep 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 18:10 EST 2019. Contains 329901 sequences. (Running on oeis4.)