login
A098525
Expansion of (1+3x^2)/(1-x-9x^5).
1
1, 1, 4, 4, 4, 13, 22, 58, 94, 130, 247, 445, 967, 1813, 2983, 5206, 9211, 17914, 34231, 61078, 107932, 190831, 352057, 660136, 1209838, 2181226, 3898705, 7067218, 13008442, 23896984, 43528018, 78616363, 142221325, 259297303, 474370159
OFFSET
0,3
COMMENTS
The expansion of (1+kx^2)/(1-x-k^2*x^5) satisfies the recurrence a(n)=a(n-1)+k^2*a(n-5),a(0)=1,a(1)=1,a(2)=k+1,a(3)=k+1,a(4)=k+1, with a(n)=sum{k=0..floor(n/2), binomial(n-2k,floor(k/2))r^k}.
FORMULA
a(n)=a(n-1)+9a(n-5); a(n)=sum{k=0..floor(n/2), binomial(n-2k, floor(k/2))3^k}.
MATHEMATICA
CoefficientList[Series[(1+3x^2)/(1-x-9x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 0, 0, 0, 9}, {1, 1, 4, 4, 4}, 50] (* Harvey P. Dale, Oct 10 2019 *)
CROSSREFS
Sequence in context: A261321 A245517 A179526 * A141666 A102127 A201625
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved