login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098514 For p=prime(n), a(n) = number of points (x,y) on the elliptic curve y^2 = x^3 + x + 1 (mod p), not including the point at infinity. 5
2, 3, 8, 4, 13, 17, 17, 20, 27, 35, 32, 47, 34, 33, 59, 57, 62, 49, 55, 58, 71, 85, 89, 99, 96, 104, 86, 104, 122, 124, 125, 127, 125, 125, 135, 153, 170, 188, 143, 171, 179, 189, 216, 200, 221, 217, 222, 243, 227, 231, 236, 261, 219, 281, 248, 259, 293, 273, 255, 288 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is one of the simplest non-degenerate elliptic curves. A theorem of Hasse states that the number of points (including the point at infinity) is p+1+d, where |d| < 2 sqrt(p).

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Joseph H. Silverman, The Ubiquity of Elliptic Curves (PowerPoint)

Eric Weisstein's World of Mathematics, Elliptic Curve

MATHEMATICA

Table[p=Prime[n]; s2=Mod[Table[y^2, {y, 0, p-1}], p]; s3=Mod[Table[x^3+x+1, {x, 0, p-1}], p]; s=Intersection[Union[s2], Union[s3]]; Sum[Count[s2, s[[i]]]*Count[s3, s[[i]]], {i, Length[s]}], {n, 100}]

CROSSREFS

Cf. A098513 (number of points on the elliptic curve y^2 = x^3 + x + 1 (mod n)).

Sequence in context: A193731 A193975 A224665 * A161198 A195232 A093898

Adjacent sequences:  A098511 A098512 A098513 * A098515 A098516 A098517

KEYWORD

nonn

AUTHOR

T. D. Noe, Sep 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 15:45 EST 2014. Contains 252236 sequences.