login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098484 Expansion of 1/sqrt((1-x)^2-12x^4). 3
1, 1, 1, 1, 7, 19, 37, 61, 145, 397, 979, 2107, 4591, 10915, 26857, 63649, 146347, 339751, 808885, 1936717, 4588705, 10803133, 25559287, 60893551, 145231309, 345462145, 821110051, 1955736379, 4668132067, 11146642903, 26605635949 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)3^k}.

Recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 12*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014

a(n) ~ sqrt(3) * (1+sqrt(1+8*sqrt(3)))^n / (sqrt(49+10*sqrt(3)-sqrt(397+884*sqrt(3))) * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jun 23 2014

MATHEMATICA

CoefficientList[Series[1/Sqrt[(1-x)^2-12*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)

CROSSREFS

Cf. A098481, A098482, A098483.

Sequence in context: A003215 A133323 A002407 * A155443 A155405 A155448

Adjacent sequences:  A098481 A098482 A098483 * A098485 A098486 A098487

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 11:02 EST 2014. Contains 250181 sequences.