login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098484 Expansion of 1/sqrt((1-x)^2-12x^4). 3
1, 1, 1, 1, 7, 19, 37, 61, 145, 397, 979, 2107, 4591, 10915, 26857, 63649, 146347, 339751, 808885, 1936717, 4588705, 10803133, 25559287, 60893551, 145231309, 345462145, 821110051, 1955736379, 4668132067, 11146642903, 26605635949 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)3^k}.

Recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 12*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014

a(n) ~ sqrt(3) * (1+sqrt(1+8*sqrt(3)))^n / (sqrt(49+10*sqrt(3)-sqrt(397+884*sqrt(3))) * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jun 23 2014

MATHEMATICA

CoefficientList[Series[1/Sqrt[(1-x)^2-12*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)

CROSSREFS

Cf. A098481, A098482, A098483.

Sequence in context: A003215 A133323 A002407 * A155443 A155405 A155448

Adjacent sequences:  A098481 A098482 A098483 * A098485 A098486 A098487

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 14:45 EST 2016. Contains 278745 sequences.