login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098430 a(n) = 4^n*(2*n)!/(n!)^2. 6
1, 8, 96, 1280, 17920, 258048, 3784704, 56229888, 843448320, 12745441280, 193730707456, 2958796259328, 45368209309696, 697972450918400, 10768717814169600, 166556168859156480, 2581620617316925440, 40091049586568724480, 623638549124402380800, 9715632133727531827200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) counts walks of 2n steps North, East, South or West that start at the origin and end on the line y=x. For example, a(1)=8 counts EW, EN, NE, NS, WE, WS, SN, SW. If the walk has i East and j North steps, then it must have n-j West and n-i South steps. There are Multinomial[i,j,n-j,n-i] ways to arrange these steps and summing over i and j gives the result. - David Callan, Oct 11 2005

Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), both of two kinds. - Joerg Arndt, Jul 01 2011

Hankel transform is A121913. - Philippe Deléham, Mar 01 2009

Convolving a(n) with itself yields A001025, the powers of 16. Thus the limiting ratio of this sequence is 16. - Bob Selcoe, Jul 16 2014

Number of strings x of length 4n over the alphabet {1, -1} such that the dot product of x with (x reversed) is 0. - Jeffrey Shallit, Mar 06 2017

Number of orthogonal pairs of vectors of length 2n, constructed with any symmetric binary-valued symbol set. - Ross Drewe, May 18 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

FORMULA

a(n) = 4^n*binomial(2*n, n) = 4^n*A000984(n).

E.g.f.: exp(8*x)*BesselI(0, 8*x).

G.f.: 1/sqrt(1-16*x). - Zerinvary Lajos, Dec 20 2008, corrected R. J. Mathar, May 18 2009

a(n) = (1/Pi)*integral(x=-2..2, (2*x)^(2*n)/(sqrt((2-x)*(2+x))). - Peter Luschny, Sep 12 2011

D-finite: n*a(n) + 8*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 10 2014

a(n) = A249308(2*n). - Reinhard Zumkeller, Nov 14 2014

a(n) = 16^n*hypergeometric([-2*n, 1/2], [1], 2). - Peter Luschny, May 19 2015

a(n) = A174301(2n,n). - Alois P. Heinz, Apr 15 2019

MAPLE

A098430 := n -> 4^n*binomial(2*n, n): seq(A098430(n), n=0..30); # Wesley Ivan Hurt, Jul 16 2014

MATHEMATICA

CoefficientList[Series[1/Sqrt[1 - 16 x], {x, 0, 16}], x] (* Robert G. Wilson v, Jun 28 2012 *)

PROG

(PARI) /* as lattice paths: same as in A092566 but use */

steps=[[1, 0], [1, 0], [0, 1], [0, 1]]; /* note the double [1, 0] and [0, 1] */

/* Joerg Arndt, Jul 01 2011 */

(MAGMA) [4^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011

(Haskell)

a098430 n = a000302 n * a000984 n -- Reinhard Zumkeller, Nov 14 2014

(Sage)

a = lambda n: 16^n*hypergeometric([-2*n, 1/2], [1], 2)

[simplify(a(n)) for n in range(23)] # Peter Luschny, May 19 2015

CROSSREFS

Cf. A000302, A000984, A174301, A249308.

Sequence in context: A060458 A173834 A260627 * A220285 A034177 A052570

Adjacent sequences:  A098427 A098428 A098429 * A098431 A098432 A098433

KEYWORD

easy,nonn,changed

AUTHOR

Paul Barry, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 19:19 EST 2020. Contains 331211 sequences. (Running on oeis4.)