login
A098420
Members of prime triples (p,q,r) with p < q < r = p + 6.
6
5, 7, 11, 13, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 97, 101, 103, 107, 109, 113, 191, 193, 197, 199, 223, 227, 229, 233, 277, 281, 283, 307, 311, 313, 317, 347, 349, 353, 457, 461, 463, 467, 613, 617, 619, 641, 643, 647, 821, 823, 827, 829, 853, 857, 859, 863
OFFSET
1,1
COMMENTS
A098418(a(n)) > 0; complement of A098419 in A000040.
Union of A007529, A098414 and A098415.
LINKS
Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013
Paul Shubhankar, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), Volume-1, Issue-10, December 2013.
Eric Weisstein's World of Mathematics, Prime Triplet
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p2=p+2]&&PrimeQ[p6=p+6], AppendTo[lst, p]; AppendTo[lst, p2]; AppendTo[lst, p6]]; If[PrimeQ[p4=p+4]&&PrimeQ[p6=p+6], AppendTo[lst, p]; AppendTo[lst, p4]; AppendTo[lst, p6]], {n, 6!}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 07 2004
STATUS
approved