login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098411 Expansion of 1/(sqrt(1-4x)sqrt(1-12x)). 1
1, 8, 72, 704, 7264, 77568, 847104, 9394176, 105334272, 1190899712, 13551235072, 154997784576, 1780378353664, 20522842062848, 237284128063488, 2750571189633024, 31956067676454912, 371997834879172608, 4337957919010062336, 50664706036388069376, 592558533060795039744 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Nguyen and Taggart (see link) conjecture: det[a(i+j) for i,j=0..n] = b(n)*b(n+1)/2 with b(n) = A139685(n). - Peter Luschny, May 19 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; Mentions this sequence. - From N. J. A. Sloane, Mar 16 2014

FORMULA

G.f.: 1/sqrt(1-16x+48x^2).

E.g.f.: exp(8x)*BesselI(0, 4x).

a(n) = Sum_{k=0..n} 3^k*binomial(2k, k)*binomial(2(n-k), n-k).

Conjecture: n*a(n) +8*(1-2*n)*a(n-1) +48*(n-1)*a(n-2)=0. - R. J. Mathar, Sep 26 2012

a(n) ~ sqrt(3)*12^n/sqrt(2*Pi*n). - Vaclav Kotesovec, Oct 15 2012

a(n) = 4^n*hypergeometric([-n, 1/2], [1], -2). - Peter Luschny, May 19 2015

MATHEMATICA

Table[SeriesCoefficient[1/(Sqrt[1-4*x]*Sqrt[1-12*x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

PROG

(PARI)  x='x+O('x^66); Vec(1/sqrt(1-16*x+48*x^2)) \\ Joerg Arndt, May 11 2013

(Sage)

a = lambda n: 4^n*hypergeometric([-n, 1/2], [1], -2)

[simplify(a(n)) for n in range(23)] # Peter Luschny, May 19 2015

CROSSREFS

Cf. A098410, A139685.

Sequence in context: A264913 A082414 A145303 * A220741 A165323 A082366

Adjacent sequences:  A098408 A098409 A098410 * A098412 A098413 A098414

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 07:08 EDT 2019. Contains 327253 sequences. (Running on oeis4.)