The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098375 (1/p)*abs(p*(p^(p-1)-1)*B(p-1)-1) when p runs through the primes and B(k) denotes the k-th Bernoulli's number. 0
 1, 1, 21, 2801, 1964956409, 5897061106093, 345112805910366790769, 5724003102153474225966281, 5621496960287976955328551429580241, 2417009997194019381479073094599560492013039757981 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: p is an odd prime iff p divides p*(p^(p-1)-1)*B(p-1)-1. Seems to be the equivalent (with integer moduli) to Agoh's conjecture (which involves rational moduli). LINKS E. Weisstein, Agoh's conjecture. PROG (PARI) a(n)=(1/prime(n))*(prime(n)*(prime(n)^(prime(n)-1)-1)*bernfrac(prime(n)-1)-1) CROSSREFS Cf. A089655. Sequence in context: A099680 A184367 A114934 * A202793 A095154 A220999 Adjacent sequences:  A098372 A098373 A098374 * A098376 A098377 A098378 KEYWORD nonn AUTHOR Benoit Cloitre, Oct 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 21:18 EDT 2020. Contains 338074 sequences. (Running on oeis4.)