%I #23 Dec 11 2020 17:15:39
%S 0,0,0,0,1,0,0,1,1,0,0,2,1,2,0,0,3,2,2,3,0,0,5,3,4,3,5,0,0,8,5,6,6,5,
%T 8,0,0,13,8,10,9,10,8,13,0,0,21,13,16,15,15,16,13,21,0,0,34,21,26,24,
%U 25,24,26,21,34,0,0,55,34,42,39,40,40,39,42,34,55,0,0,89,55,68,63,65,64,65
%N Multiplication table of the Fibonacci numbers read by antidiagonals.
%C Same as triangle T(n,k) = F(n)-F(k)*F(n-k+1), read by rows, F(i) = A000045(i). - _Dale Gerdemann_, Apr 24 2016
%H Michael De Vlieger, <a href="/A098356/b098356.txt">Table of n, a(n) for n = 0..11324</a> (rows 0 <= n <= 149, flattened)
%F T(n,k) = T(k,n) = A000045(n)*A000045(k) = A143211(n,k). - _R. J. Mathar_, Dec 11 2020
%e Table begins:
%e 0 0 0 0 0 0 0 0 0 ...
%e 0 1 1 2 3 5 8 13 21...
%e 0 1 1 2 3 5 8 13 21...
%e 0 2 2 4 6 10 16 26 42...
%e 0 3 3 6 9 15 24 39 63...
%e 0 5 5 10 15 25 40 65 105...
%e 0 8 8 16 24 40 64 104 168...
%e 0 13 13 26 39 65 104 169 273...
%e 0 21 21 42 63 105 168 273 441...
%t Table[Fibonacci[n] - Fibonacci[k]*Fibonacci[n - k + 1], {n, 13}, {k, n}] // Flatten (* _Michael De Vlieger_, Dec 11 2020 *)
%Y Cf. A003991, A058071, A001629 (antidiagonal sums).
%K nonn,tabl,easy
%O 0,12
%A Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004