The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098328 Recurrence sequence derived from the digits of the cube root of 2 after its decimal point. 3
 0, 7, 14, 42, 147, 321, 473, 322, 785, 1779, 3039, 1957, 16446, 274134, 374781, 110639, 248175, 385504, 2359264, 5108010, 3822244, 3812946, 9896631 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i). EXAMPLE 2^(1/3)=1.259921049894873164767210607... So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on. MAPLE with(StringTools): Digits:=10000: G:=convert(evalf(root(2, 3)), string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1], string), G)-2:printf("%d, ", a[n-1]):od: # Nathaniel Johnston, Apr 30 2011 CROSSREFS Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3). Sequence in context: A161814 A067048 A189046 * A062098 A045759 A166637 Adjacent sequences:  A098325 A098326 A098327 * A098329 A098330 A098331 KEYWORD base,more,nonn AUTHOR Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004 EXTENSIONS More terms from Ryan Propper, Jul 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)