

A098324


Recurrence sequence based on positions of digits in decimal places of phi, the Golden Ratio = (1+sqrt(5))/2.


7



0, 4, 11, 34, 26, 67, 150, 1485, 2497, 8001, 2773, 16668, 39567, 80705, 15643, 19267, 29310, 223602, 2318795, 9376463, 7972671, 2412975, 3754694, 9560425, 1910435
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..24.


FORMULA

a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of phi, a(i+1)=p(i).


EXAMPLE

phi=1.61803398874989484820...
So for example, a(2)=4 because 4th decimal place of phi is 0.
a(3)=11 because 11th decimal place of phi is 4, a(4)=34 because 11 appears at the 34th to 35th decimal places and so on.


MAPLE

with(StringTools): Digits:=100000: G:=convert(evalf((1+sqrt(5))/2), string): a[0]:=0: for n from 1 to 17 do a[n]:=Search(convert(a[n1], string), G)2:printf("%d, ", a[n1]):od: # Nathaniel Johnston, Apr 30 2011


CROSSREFS

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G.
Sequence in context: A259442 A127154 A062460 * A327548 A144791 A180305
Adjacent sequences: A098321 A098322 A098323 * A098325 A098326 A098327


KEYWORD

more,nonn,base


AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 03 2004


EXTENSIONS

a(17)a(24) from Nathaniel Johnston, Apr 30 2011


STATUS

approved



