

A098321


Recurrence sequence based on positions of digits in decimal places of gamma, the EulerMascheroni constant.


10



0, 11, 233, 223, 1080, 2631, 19161, 318674, 269389, 609124, 97349, 125496, 2611514, 6766458, 2093818, 4312197, 4284994, 7170002, 567295, 234495, 1574091, 1722475, 6848664, 777039, 637036, 1367169, 8195403, 3747746, 21147798, 2053675, 6009248, 12095, 312755, 1205372, 15773902, 139394774, 169096914
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..36.


FORMULA

a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of gamma, a(i+1)=p(i).


EXAMPLE

So for example, a(2)=11 because 11th digit of gamma after decimal point is 0.
a(3)=233 because 233rd decimal digit of gamma is where 11 appears, a(4)=223 because 223rd to 225th digits of gamma form "233" and so on.


CROSSREFS

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e. See A001620 for gamma digits.
Sequence in context: A045757 A144773 A061115 * A033864 A142120 A252893
Adjacent sequences: A098318 A098319 A098320 * A098322 A098323 A098324


KEYWORD

easy,nonn,base


AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 03 2004


EXTENSIONS

More terms from Charles R Greathouse IV, Sep 25 2008


STATUS

approved



