This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098265 G.f. : 1/(1-2x-23x^2)^(1/2). 2
 1, 1, 13, 37, 289, 1201, 7741, 38053, 227137, 1207009, 6995053, 38591653, 221446369, 1245188881, 7130897437, 40516456357, 232260610177, 1327920945601, 7627285093069, 43787832627493, 252042452907169, 1451244932278129, 8370001674641917, 48303478743113893, 279083099450496961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Central coefficient of (1+x+6x^2)^n. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. FORMULA E.g.f.: exp(x)*BesselI(0, 2*sqrt(6)x). a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k)*6^k}. a(n) = sum{k=0..floor(n/2), binomial(n, 2k)*binomial(2k, k)*6^k}. n*a(n) +(1-2n)*a(n-1) +23(1-n)*a(n-2)=0. (Recurrence (4) in the Noe paper).- Veka Gesell, Jun 26 2012 a(n) ~ sqrt(72+6*sqrt(6))*(1+2*sqrt(6))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012 MATHEMATICA Table[SeriesCoefficient[1/Sqrt[1-2*x-23*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) x='x+O('x^66); Vec(1/(1-2*x-23*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A084601, A084603, A084605, A098264. Sequence in context: A206279 A130621 A309594 * A195540 A262475 A309808 Adjacent sequences:  A098262 A098263 A098264 * A098266 A098267 A098268 KEYWORD easy,nonn AUTHOR Paul Barry, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)