This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098111 Inverse binomial transform of A098149. 1
 1, 0, -5, -25, -100, -375, -1375, -5000, -18125, -65625, -237500, -859375, -3109375, -11250000, -40703125, -147265625, -532812500, -1927734375, -6974609375, -25234375000, -91298828125, -330322265625, -1195117187500, -4323974609375, -15644287109375, -56601562500000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A030191(n) + 2a(n) + A093129(n+2) = 4 A093129(n+1). - Creighton Dement, Oct 18 2004 From Wolfdieter Lang, Oct 02 2013: (Start) These numbers a(n) and those of A030191(n) =: b(n), both interspersed with zeros, appear in the formula for nonnegative powers of the algebraic number rho(10) := 2*cos(pi/10) = phi*sqrt(3-phi), with the golden section phi, in terms of the power basis of the number field Q(rho(10)) of degree 4 (see A187360, n=10). In a (regular) decagon rho(10) is the length ratio of a smallest diagonal to the side. rho(10)^n = sum(A(n,k)*rho(10)^k, k=0..3), with A(2*k+1,0) = 0, A(2*k,0) = a(k), k >= 0; A(2*k,1) = 0, A(2*k+1,1) = a(k), k >= 0; A(2*k+1,2) = 0, k >= 0, A(0,2) = 0, A(2*k,2) = b(k-1), k >= 1; and A(2*k,3) = 0, k >= 0, A(1,3) = 0, A(2*k+1,3) = b(k-1), k >= 1. (End) LINKS Index entries for linear recurrences with constant coefficients, signature (5,-5). FORMULA G.f.: (1-5x)/(1-5x+5x^2). From - Wolfdieter Lang, Oct 02 2013 (Start) a(n) = b(n) - 5*b(n-1), n >= 0,  with b(n) = A030191(n) = (sqrt(5))^n*S(n, sqrt(5)), with Chebyshev S-polynomials (see A049310). a(n) = 5*(a(n-1) - a(n-2)), n >= 1, a(-1) = 1 = a(0). (End) EXAMPLE Powers of rho(10) in the Q(rho(10)) power basis for n = 5: rho(10)^5 = 0*1 + a(2)*rho(10) + 0*rho(10)^2 + b(1)*rho(10)^3 = -5*rho(10) + 5*rho(10)^3.  - Wolfdieter Lang, Oct 02 2013 MATHEMATICA LinearRecurrence[{5, -5}, {1, 0}, 40] (* Harvey P. Dale, Dec 08 2015 *) PROG Floretion Algebra Multiplication Program, FAMP CROSSREFS Sequence in context: A146830 A255612 A022729 * A224415 A255459 A083877 Adjacent sequences:  A098108 A098109 A098110 * A098112 A098113 A098114 KEYWORD easy,sign AUTHOR Creighton Dement, Sep 23 2004 EXTENSIONS More terms from David Wasserman, Jan 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.