login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098077 a(n) = n^2*(n+1)*(2*n+1)/3. 10
2, 20, 84, 240, 550, 1092, 1960, 3264, 5130, 7700, 11132, 15600, 21294, 28420, 37200, 47872, 60690, 75924, 93860, 114800, 139062, 166980, 198904, 235200, 276250, 322452, 374220, 431984, 496190, 567300, 645792, 732160, 826914, 930580, 1043700 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sum of all matrix elements M(i,j) = i^2 + j^2 (i,j = 1,...,n).

From Torlach Rush, Jan 05 2020: (Start)

a(n) = n * A006331(n).

tr(M(n)) = A006331(n).

The sum of the antidiagonal of M(n) equals tr(M(n)).

M(n) = M(n)' (Symmetric).

M(1,) = M(,1) = A002522(n), n > 0.

M(2,) = M(,2) = A087475(n), n > 0.

M(3,) = M(,3) = A189834(n), n > 0.

M(4,) = M(,4) = A241751(n), n > 0.

(End)

Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and p+q. - Wesley Ivan Hurt, Apr 15 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = Sum_{j=1..n} Sum_{i=1..n} (i^2 + j^2).

G.f.: 2*x*(1 + 5*x + 2*x^2)/(1-x)^5. - Colin Barker, May 04 2012

E.g.f.: (1/3)*exp(x)*x*(6 + 24*x + 15*x^2 + 2*x^3) . - Stefano Spezia, Jan 06 2020

a(n) = a(n-1) + (8*n^3 - 3*n^2 + n)/3. - Torlach Rush, Jan 07 2020

EXAMPLE

a(2) = (1^2 + 1^2) + (1^2 + 2^2) + (2^2 + 1^2) + (2^2 + 2^2) = 2 + 5 + 5 + 8 = 20.

MATHEMATICA

Table[ Sum[i^2 + j^2, {i, n}, {j, n}], {n, 35}]

LinearRecurrence[{5, -10, 10, -5, 1}, {2, 20, 84, 240, 550}, 40] (* Vincenzo Librandi, Apr 16 2018 *)

PROG

(PARI) a(n)=n^2*(n+1)*(2*n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A002522, A006331, A087475, A189834, A241751.

Sequence in context: A259110 A135188 A161007 * A279264 A063663 A071253

Adjacent sequences:  A098074 A098075 A098076 * A098078 A098079 A098080

KEYWORD

nonn,easy,changed

AUTHOR

Alexander Adamchuk, Oct 24 2004

EXTENSIONS

More terms from Robert G. Wilson v, Nov 01 2004

New definition from Ralf Stephan, Dec 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 01:15 EST 2020. Contains 331166 sequences. (Running on oeis4.)