OFFSET
0,4
COMMENTS
REFERENCES
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26, 1979, 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problemes d'enumeration en biologie moleculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
LINKS
M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux at problemes d'enumeration en biologie moleculaire, Sem. Loth. Comb. B08l (1984) 79-86.
FORMULA
G.f.=G=G(t, z) satisfies G = 1 + zG + z^2*[H + 2tzH/(1-z)+t^2*z^2*H/(1-z)^2+ z/(1-z)][G-(1-t)zH/(1-z)^2], where H=(1-z)^2*G-1+z.
The 4-variate g.f. G(t,s,v,z) of peakless Motzkin paths, where t, s, v mark subwords of the types uH^ju, dH^jd, dH^ju, respectively, and z marks length, satisfies the equation
G = 1+zG+z^2*[H + (t+s)zH/(1-z)+tsz^2*H/(1-z)^2+z/(1-z)][G-(1-v)zH/(1-z)^2],
EXAMPLE
Triangle starts:
1;
1;
1;
2;
4;
8;
15,2;
27,9,1;
48,29,5;
84.80,21;
147,198,74,7;
It seems that the number r(n) of terms in row n>=3 is given by r(n)=n/2-1 if
n=2 (mod 4) and r(n)=2*round(n/4)-1 otherwise (here round(m) is the nearest integer to m).
T(7,1)=9 because we have h(uhu)hdd, (uhhu)hdd, (uhu)hhdd, (uhu)hddh, uh(dhu)hd and the reflections of the first four paths in a vertical axis; here u=(1,1), h=(1,0), d=(1,-1) and the pertinent subwords are shown between parentheses.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 11 2004r
STATUS
approved