login
A098055
Let M={{0,1,0},{0,0,1},{1,1,0}}, M0=MatrixPower[(M-IdentityMatrix[3]),2], Det[M0], a[n_]:=M0.a[n-1]; a[0]:={{0,1,1},{1,1,1},{1,1,2}}.
0
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 3, 4, 3, 4, 3, 4, 3, 1, 10, 14, 11, 14, 11, 4, 11, 4, 3, 49, 40, 16, 40, 16, 9, 16, 9, 24, 145, 63, 26, 63, 26, 82, 26, 82, 89, 245, 71, 279, 71, 279, 316, 279, 316, 208, 176, 945, 1119, 945, 1119, 769, 1119, 769, 174, 3185
OFFSET
0,9
COMMENTS
3 X 3 matrix from the minimal Pisot generator matrix by: (M-I)^2.
MATHEMATICA
(*square matrix 3 X 3 Markov sequence*) Clear[x, M, A] digits=21 M={{0, 1, 0}, {0, 0, 1}, {1, 1, 0}} M0=MatrixPower[(M-IdentityMatrix[3]), 2] Det[M0] A[n_]:=M0.A[n-1]; A[0]:={{0, 1, 1}, {1, 1, 1}, {1, 1, 2}}; (* flattened sequence of 3 X 3 matrices made with an alternating recurrence*) b=Flatten[Table[Abs[A[n]], {n, 0, digits}]] ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A355826 A355819 A330262 * A344739 A092111 A330167
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 11 2004
STATUS
approved