%I #14 Nov 27 2017 02:34:06
%S 3,7,10,14,17,21,24,28,31,35,39,42,46,49,53,56,60,63,67,70,74,78,81,
%T 85,88,92,95,99,102,106,110,113,117,120,124,127,131,134,138,141,145,
%U 149,152,156,159,163,166,170,173,177,181,184,188,191,195,198,202,205,209
%N Beatty sequence for 1/(3 - e): a(n) = floor(n/(3-e)).
%C Let r = 1/(3-e) and s = e-2. Then 1/r + 1/s = 1, so that [r*n] and [s*n] represent a complementary pair of Beatty sequences, A098005 and A000062; r and s are the fractional parts of -e and e.
%F a(n) = floor(n/(3-e)).
%t Table[Floor[n/(3-E)],{n,1,100}]
%Y Cf. A000062 is complement of A098005.
%K nonn
%O 1,1
%A _Roger L. Bagula_, Sep 07 2004
%E Edited by _Clark Kimberling_, Aug 24 2011