login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097992 G.f.: 1/((1-x)*(1-x^6)) = 1/ ( (1+x)*(x^2-x+1)*(1+x+x^2)*(x-1)^2 ). 3
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..88.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).

FORMULA

Molien series is 1/((1-x^2)*(1-x^12)).

a(n)= Sum_{k=0..n} 1/90*{-14*[k mod 6]+[(k+1) mod 6]+[(k+2) mod 6]+[(k+3) mod 6]+[(k+4) mod 6]+16*[(k+5) mod 6]}, with n>=0. - Paolo P. Lava, May 15 2007

a(n)=1+floor(n/6)

a(n)=1+(6*n-15+3*(-1)^n+12*sin[(2*n+1)*Pi/6]+4*sqrt(3)*sin[(2*n+1)*Pi/3])/36

CROSSREFS

Apart from initial terms, same as A054895.

Sequence in context: A133876 A152467 A242602 * A195177 A147583 A054895

Adjacent sequences:  A097989 A097990 A097991 * A097993 A097994 A097995

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.