login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097974 Sum of distinct prime divisors of n which are <= sqrt(n). 8
0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 7, 7, 3, 2, 0, 5, 5, 9, 3, 2, 0, 10, 0, 2, 10, 2, 5, 5, 0, 2, 3, 14, 0, 5, 0, 2, 8, 2, 7, 5, 0, 7, 3, 2, 0, 12, 5, 2, 3, 2, 0, 10, 7, 2, 3, 2, 5, 5, 0, 9, 3, 7, 0, 5, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020

EXAMPLE

2 and 3 are the distinct prime divisors of 12 and both 2 and 3 are <= square root of 12. So a(12) = 2 + 3 = 5.

MAPLE

with(numtheory): a:=proc(n) local s, F, f, i: s:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then s:=s+F[i] else s:=s: fi od: s; end: seq(a(n), n=1..110); # Emeric Deutsch, Jan 30 2006

MATHEMATICA

Do[Print[Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]], {n, 1, 100}] (* Ryan Propper, Jul 23 2005 *)

Table[DivisorSum[n, # &, And[PrimeQ@ #, # <= Sqrt[n]] &], {n, 103}] (* Michael De Vlieger, Sep 04 2017 *)

PROG

(Haskell)

a097974 n = sum [p | p <- a027748_row n, p ^ 2 <= n]

-- Reinhard Zumkeller, Apr 05 2012

(PARI) a(n) = sumdiv(n, d, d*isprime(d)*(d <= sqrt(n))); \\ Michel Marcus, Aug 17 2017

CROSSREFS

Cf. A027748, A063962.

Sequence in context: A271419 A278922 A163169 * A333753 A139036 A292129

Adjacent sequences:  A097971 A097972 A097973 * A097975 A097976 A097977

KEYWORD

nonn

AUTHOR

Leroy Quet, Sep 07 2004

EXTENSIONS

More terms from Ryan Propper, Jul 23 2005

Further terms from Emeric Deutsch, Jan 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 20:09 EDT 2020. Contains 336326 sequences. (Running on oeis4.)