

A097964


Fractional Pisot with constant ration for (1/2,1/2) Bezier.


0



2, 5, 7, 3, 5, 8, 2, 3, 6, 4, 7, 12, 6, 11, 17, 4, 8, 12, 10, 17, 27, 12, 21, 34, 9, 15, 24, 20, 34, 54, 25, 42, 68, 18, 30, 49, 40, 67, 108, 50, 85, 136, 36, 61, 97, 80, 135, 216, 101, 170, 271, 72, 121, 194, 160, 270, 430, 201, 339, 541, 144, 242, 387, 320, 538, 859, 402
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..66.


FORMULA

M=N[4^(1/3)*({{0, 1, 0}, {1, 1, 0}, {0, 0, 0}}/2+{{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}/2)]; A[n_]:=M.A[n1]; A[0]:={{0, 1, 1}, {1, 1, 2}, {1, 2, 3}};


MATHEMATICA

(* Fractional Pisot 3 X 3 Markov sequence*) Clear[M, A, x] digits=21; M=N[4^(1/3)*({{0, 1, 0}, {1, 1, 0}, {0, 0, 0}}/2+{{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}/2)]; Det[M] A[n_]:=M.A[n1]; A[0]:={{0, 1, 1}, {1, 1, 2}, {1, 2, 3}}; (* flattened sequence of 3 X 3 matrices made with a Fractional Pisot recurrence*) b=Flatten[Table[M.A[n], {n, 1, digits}]] Floor[Abs[b]] Dimensions[b][[1]] ListPlot[b, PlotJoined>True]


CROSSREFS

Sequence in context: A093200 A095795 A088531 * A133133 A024710 A140264
Adjacent sequences: A097961 A097962 A097963 * A097965 A097966 A097967


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Sep 06 2004


STATUS

approved



