The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097950 G.f.: (1+x^5+x^10)/((1-x)*(1-x^3)). 0

%I

%S 1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

%T 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,

%U 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72

%N G.f.: (1+x^5+x^10)/((1-x)*(1-x^3)).

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F Molien series is (1+x^10+x^20)/((1-x^2)*(1-x^6)).

%F a(n) = n - 3 for n > 7. [_Charles R Greathouse IV_, Oct 27 2011]

%t CoefficientList[Series[(1+x^5+x^10)/((1-x)*(1-x^3)),{x,0,80}],x] (* or *) LinearRecurrence[{2,-1},{1,1,1,2,2,3,4,4,5},80] (* _Harvey P. Dale_, Oct 11 2015 *)

%o (PARI) a(n)=if(n>7,n-3,[1, 1, 1, 2, 2, 3, 4, 4][n+1]) \\ _Charles R Greathouse IV_, Oct 27 2011

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_, Sep 06 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 08:07 EST 2020. Contains 331081 sequences. (Running on oeis4.)