login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097947 G.f.: -(2+7*x+2*x^2)/(1+4*x-4*x^3-x^4). 2
-2, 1, -6, 16, -62, 225, -842, 3136, -11706, 43681, -163022, 608400, -2270582, 8473921, -31625106, 118026496, -440480882, 1643897025, -6135107222, 22896531856, -85451020206, 318907548961, -1190179175642, 4441809153600, -16577057438762, 61866420601441, -230888624967006 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

One of 4 related sequences. This is the sequence "les(n)". "jes(n)" = [1, -4, 15, -56, ...] is (-1)^(n+1)*A001353(n+1), "tes(n)" is A097948 and "ves(n)" is A099949.

LINKS

Table of n, a(n) for n=0..26.

Index entries for linear recurrences with constant coefficients, signature (-4,0,4,1).

FORMULA

Properties (from Creighton Dement, Sep 06 2004):

I: jes(n) + les(n) + tes(n) = ves(n)

II: All of the following are perfect squares: {les(2n+1); tes(2n+1); ves(2n+1); ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1; 3*les(2n+1) + 1 = 3*jes(n)^2 + 1}.

III: les(2n+1) divides ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1

IV: (jes(n))^2 = les(2n+1)

V: tes(2n) = A001570(n), sqrt( tes(2n+1) ) = A001075(n)

VI: sqrt( ves(2n+1) ) = A001835(n)

VII: sqrt( les(2n+1) ) = A001353(n)

VIII: les(n) + tes(n) = ves(2+n) + jes(n)

IX: lim n |jes(n+1)/jes(n)| = lim n |les(n+1)/les(n)| = lim n |tes(n+1)/tes(n)| = lim n |ves(n+1)/ves(n)| = 2 + sqrt(3)

Comment from Roland Bacher, Sep 07 2004: These 4 sequences satisfy jes(n+1)=-4*jes(n)-jes(n-1), les(n+1)=les(n-1)+jes(n), ves(n+1)=les(n-1)-jes(n-1)+tes(n-1), tes(n+1)=les(n-1)+3*jes(n), plus initial conditions for n=0, 1.

CROSSREFS

Cf. A001353, A097948, A097949.

Sequence in context: A254639 A049951 A025263 * A101032 A025271 A153804

Adjacent sequences:  A097944 A097945 A097946 * A097948 A097949 A097950

KEYWORD

sign

AUTHOR

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 17:57 EDT 2017. Contains 287241 sequences.