login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097947 G.f.: -(2+7*x+2*x^2)/(1+4*x-4*x^3-x^4). 2
-2, 1, -6, 16, -62, 225, -842, 3136, -11706, 43681, -163022, 608400, -2270582, 8473921, -31625106, 118026496, -440480882, 1643897025, -6135107222, 22896531856, -85451020206, 318907548961, -1190179175642, 4441809153600, -16577057438762, 61866420601441, -230888624967006 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

One of 4 related sequences. This is the sequence "les(n)". "jes(n)" = [1, -4, 15, -56, ...] is (-1)^(n+1)*A001353(n+1), "tes(n)" is A097948 and "ves(n)" is A099949.

LINKS

Table of n, a(n) for n=0..26.

Index entries for linear recurrences with constant coefficients, signature (-4,0,4,1).

FORMULA

Properties (from Creighton Dement, Sep 06 2004):

I: jes(n) + les(n) + tes(n) = ves(n)

II: All of the following are perfect squares: {les(2n+1); tes(2n+1); ves(2n+1); ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1; 3*les(2n+1) + 1 = 3*jes(n)^2 + 1}.

III: les(2n+1) divides ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1

IV: (jes(n))^2 = les(2n+1)

V: tes(2n) = A001570(n), sqrt( tes(2n+1) ) = A001075(n)

VI: sqrt( ves(2n+1) ) = A001835(n)

VII: sqrt( les(2n+1) ) = A001353(n)

VIII: les(n) + tes(n) = ves(2+n) + jes(n)

IX: lim n |jes(n+1)/jes(n)| = lim n |les(n+1)/les(n)| = lim n |tes(n+1)/tes(n)| = lim n |ves(n+1)/ves(n)| = 2 + sqrt(3)

Comment from Roland Bacher, Sep 07 2004: These 4 sequences satisfy jes(n+1)=-4*jes(n)-jes(n-1), les(n+1)=les(n-1)+jes(n), ves(n+1)=les(n-1)-jes(n-1)+tes(n-1), tes(n+1)=les(n-1)+3*jes(n), plus initial conditions for n=0, 1.

CROSSREFS

Cf. A001353, A097948, A097949.

Sequence in context: A254639 A049951 A025263 * A101032 A025271 A153804

Adjacent sequences:  A097944 A097945 A097946 * A097948 A097949 A097950

KEYWORD

sign

AUTHOR

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.