The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097936 Total number of parts in all compositions of n into distinct odd parts. 2
 1, 0, 1, 4, 1, 4, 1, 8, 19, 8, 19, 12, 37, 12, 55, 112, 73, 112, 91, 212, 127, 308, 145, 504, 781, 600, 817, 892, 1453, 1084, 2089, 1472, 3343, 1760, 4579, 6564, 6433, 6948, 8287, 11944, 11341, 16744, 14395, 26156, 18667, 35468, 22921, 53712, 64273, 67440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA Sum_{k>0} (k*k!*x^(k^2)/Product_{j=1..k} (1-x^(2*j))). MAPLE b:= proc(n, i) option remember; `if`(n=0, 1,       `if`(n>(i+1)^2/4, [][], zip((x, y)->x+y, [b(n, i-2)],       `if`(i>n, [], [0, b(n-i, i-2)]), 0)[]))     end: a:= proc(n) option remember; local l; l:=[b(n, n-1+irem(n, 2))];       add(i*l[i+1]*i!, i=1..nops(l)-1)     end: seq (a(n), n=1..60);  # Alois P. Heinz, Nov 20 2012 MATHEMATICA Drop[ CoefficientList[ Series[Sum[k*k!*x^k^2/Product[1 - x^(2j), {j, 1, k}], {k, 1, 55}], {x, 0, 50}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *) CROSSREFS Cf. A097910, A079499, A032021. Sequence in context: A322819 A089655 A322820 * A277027 A050338 A301598 Adjacent sequences:  A097933 A097934 A097935 * A097937 A097938 A097939 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Sep 05 2004 EXTENSIONS More terms from Robert G. Wilson v, Sep 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 01:15 EST 2020. Contains 331166 sequences. (Running on oeis4.)