login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097933 Primes such that p divides 3^((p-1)/2) - 1. 9
11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601, 613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Rational primes that decompose in the field Q[sqrt(3)]. - N. J. A. Sloane, Dec 26 2017

For all primes p > 2 and integers gcd(x, y, p) = 1, x^((p-1)/2) +- y^((p-1)/2) is divisible by p. This is because (x^((p-1)/2) - y^((p-1)/2))(x^((p-1)/2) + y^((p-1)/2)) = x^(p-1) - y^(p-1) is divisible by p according to Fermat's Little Theorem (FLT). This sequence lists p that divides 3^((p-1)/2) - 1^((p-1)/2), and A003630 lists the '+' case.

Apart from initial terms, this and A038874 are the same. - N. J. A. Sloane, May 31 2009

Primes in A091998. - Reinhard Zumkeller, Jan 07 2012

Also, primes congruent to 1 or 11 (mod 12). - Vincenzo Librandi, Mar 23 2013

Conjecture: Let r(n) = (a(n) - 1)/(a(n) + 1) if a(n) mod 4 = 1, (a(n) + 1)/(a(n) - 1) otherwise; then Product_{n>=1} r(n) = (6/5) * (6/7) * (12/11) * (18/19) * ... = 2/sqrt(3). - Dimitris Valianatos, Mar 27 2017

Primes p such that Kronecker(12,p) = +1 (12 is the discriminant of Q[sqrt(3)]), that is, odd primes that have 3 as a quadratic residue. - Jianing Song, Nov 21 2018

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Index to sequences related to decomposition of primes in quadratic fields

EXAMPLE

For p = 5, 3^2 - 1 = 8 <> 3*k for any integer k, so 5 is not in this sequence.

For p = 11, 3^5 - 1 = 242 = 11*22, so 11 is in this sequence.

MATHEMATICA

Select[Prime[Range[300]], MemberQ[{1, 11, 13, 23}, Mod[#, 24]]&] (* Vincenzo Librandi, Mar 23 2013 *)

PROG

(PARI) /* s = +-1, d=diff */ ptopm1d2(n, x, d, s) = { forprime(p=3, n, p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p", "))) }

(PARI) {a(n)= local(m, c); if(n<1, 0, c=0; m=0; while( c<n, m++; if( isprime(m)& kronecker(3, m)==1, c++)); m)} /* Michael Somos, Aug 28 2006 */

(Haskell)

a097933 n = a097933_list !! (n-1)

a097933_list = [x | x <- a091998_list, a010051 x == 1]

-- Reinhard Zumkeller, Jan 07 2012

(MAGMA) [p: p in PrimesUpTo(1000) | p mod 24 in [1, 11, 13, 23]]; // Vincenzo Librandi, Mar 23 2013

CROSSREFS

Cf. A003630, A010051, A038874, A091998.

Sequence in context: A136058 A106073 A072330 * A166484 A127043 A084952

Adjacent sequences:  A097930 A097931 A097932 * A097934 A097935 A097936

KEYWORD

nonn

AUTHOR

Cino Hilliard, Sep 04 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)