login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097885 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n with k valleys (n>=0, 0<=k<=floor(n/2)-1; a valley is a downstep followed by an upstep). 1
1, 1, 2, 4, 8, 1, 17, 4, 37, 13, 1, 82, 40, 5, 185, 116, 21, 1, 423, 326, 80, 6, 978, 899, 279, 31, 1, 2283, 2444, 924, 140, 7, 5373, 6578, 2948, 568, 43, 1, 12735, 17576, 9136, 2156, 224, 8, 30372, 46702, 27690, 7777, 1035, 57, 1, 72832, 123568, 82453, 26952, 4422 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also, triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k double rises (i.e. UU's, where U=(1,1)). E.g. T(5,1)=4 counts HUUDD, UUDDH, UUHDD and UUDHD, where U=(1,1), H=(1,0) and D=(1,-1).

Row sums are the Motzkin numbers (A001006). Column 0 gives A004148.

LINKS

Table of n, a(n) for n=0..55.

FORMULA

G.f. G=G(t, z) satisfies z^2*(t+z-tz)G^2-(1-z-z^2+tz^2)*G+1=0.

EXAMPLE

Triangle starts:

1;

1;

2;

4;

8,1;

17,4;

37,13,1;

Row n (n>=2) has floor(n/2) terms.

T(5,1)=4 counts HU(DU)D, U(DU)DH, U(DU)HD and UH(DU)D (here U=(1,1), H=(1,0) and D=(1,-1); valleys are shown between parentheses).

MAPLE

eq:=G=1+z*G+z^2*G*(t*(G-1-z*G)+1+z*G): sol:=solve(eq, G): Gser:=simplify(series(sol[1], z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: 1, 1, seq(seq(coeff(t*P[n], t^k), k=1..floor(n/2)), n=0..12);

CROSSREFS

Cf. A001006, A004148.

Sequence in context: A097888 A030275 A097874 * A097892 A197282 A215452

Adjacent sequences:  A097882 A097883 A097884 * A097886 A097887 A097888

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Sep 02 2004

EXTENSIONS

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 14:15 EDT 2019. Contains 322386 sequences. (Running on oeis4.)