The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097855 Numbers palindromic in bases 10 and 17. 37
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 252, 494, 545, 767, 818, 989, 2882, 4554, 61416, 94249, 177771, 256652, 335533, 1388831, 4165614, 8837388, 31744713, 102757201, 103595301, 123616321, 124454421, 207535702, 208373802, 212313212, 229232922 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..70 (first 67 terms from Ray Chandler) MATHEMATICA NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 17], AppendTo[l, a]], {n, 40000}]; l (* Robert G. Wilson v, Sep 03 2004 *) b1=10; b2=17; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 17] &] (* Robert Price, Nov 09 2019 *) PROG (MAGMA) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 17) eq Reverse(Intseq(n, 17))]; // Vincenzo Librandi, Nov 23 2014 CROSSREFS Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A099165. Sequence in context: A248889 A029967 A029968 * A250408 A029969 A029731 Adjacent sequences:  A097852 A097853 A097854 * A097856 A097857 A097858 KEYWORD base,nonn AUTHOR Cino Hilliard, Aug 31 2004 EXTENSIONS More terms from Robert G. Wilson v, Sep 03 2004 Term 0 prepended by Robert G. Wilson v, Oct 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)