login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097852 Expansion of (1+x^15)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^10)). 13
1, 0, 1, 0, 2, 0, 3, 0, 4, 0, 6, 0, 8, 0, 10, 1, 13, 1, 16, 2, 20, 3, 24, 4, 29, 6, 34, 8, 40, 10, 47, 13, 54, 16, 62, 20, 71, 24, 80, 29, 91, 34, 102, 40, 114, 47, 127, 54, 141, 62, 156, 71, 172, 80, 189, 91, 207, 102, 226, 114, 247, 127, 268, 141, 291, 156, 315, 172, 340, 189, 367 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Poincare series for invariant polynomial functions on the space of binary forms of degree 6.

LINKS

Table of n, a(n) for n=0..70.

Andries Brouwer, Poincaré Series (See n=6).

J.-I. Igusa, Modular forms and projective invariants, Amer. J. Math., 89 (1967), 817-855; see p. 847.

R. P. Stanley, F. Zanello, Some asymptotic results on q-binomial coefficients, 2014.

Index entries for linear recurrences with constant coefficients, signature (-1,1,2,2,1,-1,-3,-3,-1,1,2,2,1,-1,-1).

MATHEMATICA

CoefficientList[Series[(1+x^15)/((1-x^2)(1-x^4)(1-x^6)(1-x^10)), {x, 0, 100}], x] (* Harvey P. Dale, Sep 29 2018 *)

CROSSREFS

For these Poincare series for d = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24 see A097852, A293933, A097851, A293934, A293935, A293936, A293937, A293938, A293939, A293940, A293941, A293942, A293943 respectively.

Sequence in context: A194749 A096234 A284969 * A008801 A073739 A223707

Adjacent sequences:  A097849 A097850 A097851 * A097853 A097854 A097855

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 23:10 EDT 2020. Contains 334858 sequences. (Running on oeis4.)