login
A097851
G.f.: (1+x^8+x^9+x^10+x^18)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
14
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 13, 20, 22, 31, 36, 47, 54, 71, 80, 102, 117, 144, 164, 201, 227, 272, 309, 365, 411, 483, 540, 627, 702, 806, 898, 1026, 1137, 1289, 1427, 1606, 1770, 1985, 2179, 2429, 2663, 2952, 3225, 3565, 3882, 4272, 4644, 5090, 5518, 6032, 6522
OFFSET
0,5
COMMENTS
Poincare series for invariant polynomial functions on the space of binary forms of degree 8.
LINKS
Andries Brouwer, Poincaré Series (See n=8).
J.-I. Igusa, Modular forms and projective invariants, Amer. J. Math., 89 (1967), 817-855; see p. 847.
Peter Littelmann and Claudio Procesi, On the Poincaré series of the invariants of binary forms, Journal of Algebra 133.2 (1990): 490-499. See last page.
Index entries for linear recurrences with constant coefficients, signature (-1,1,3,3,0,-3,-4,-3,-1,1,2,3,3,2,1,-1,-3,-4,-3,0,3,3,1,-1,-1).
PROG
(PARI) Vec((1+x^8+x^9+x^10+x^18)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)) + O(x^50)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
For these Poincare series for d = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24 see A097852, A293933, A097851, A293934, A293935, A293936, A293937, A293938, A293939, A293940, A293941, A293942, A293943 respectively.
This Poincare series is mentioned in A079293.
Sequence in context: A027591 A027596 A007213 * A266778 A107235 A266779
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 01 2004
STATUS
approved