This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097845 Chebyshev polynomials S(n,171) + S(n-1,171) with Diophantine property. 4

%I

%S 1,172,29411,5029109,859948228,147046117879,25144026209081,

%T 4299481435634972,735186181467371131,125712537549484828429,

%U 21496108734780438290228,3675708881109905462800559

%N Chebyshev polynomials S(n,171) + S(n-1,171) with Diophantine property.

%C (13*a(n))^2 - 173*b(n)^2 = -4 with b(n) = A098244(n) give all positive solutions of this Pell equation.

%H Indranil Ghosh, <a href="/A097845/b097845.txt">Table of n, a(n) for n = 0..446</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (171, -1).

%F a(n) = S(n, 171) + S(n-1, 171) = S(2*n, sqrt(173)), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 171) = A097844(n).

%F a(n) = (-2/13)*I*((-1)^n)*T(2*n+1, 13*I/2) with the imaginary unit I and Chebyshev's polynomials of the first kind. See the T-triangle A053120.

%F G.f.: (1+x)/(1-171*x+x^2).

%F a(n) = 171*a(n-1) - a(n-2), n>1, a(0)=1, a(1)=172 . - _Philippe DelĂ©ham_, Nov 18 2008

%e All positive solutions of Pell equation x^2 - 173*y^2 = -4 are (13 = 13*1,1), (2236 = 13*172,170), (382343 = 13*29411,29069), (65378417 = 13*5029109,4970629), ...

%t LinearRecurrence[{171,-1},{1,172},20] (* _Harvey P. Dale_, Feb 27 2012 *)

%t CoefficientList[Series[(1+x)/(1-171*x+x^2), {x, 0, 20}], x] (* _Stefano Spezia_, Jan 14 2019 *)

%o (PARI) Vec((1+x)/(1-171*x+x^2)+O(x^20)) \\ _Charles R Greathouse IV_, Feb 08 2017

%o (MAGMA) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/(1-171*x+x^2) )); // _G. C. Greubel_, Jan 14 2019

%o (Sage) ((1+x)/(1-171*x+x^2)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 14 2019

%o (GAP) a:=[1,172];; for n in [3..20] do a[n]:=171*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 14 2019

%Y Cf. A049310, A098244.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Sep 10 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 00:33 EST 2019. Contains 330013 sequences. (Running on oeis4.)