login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097836 Chebyshev polynomials S(n,51). 5
1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 53*y^2 = -4. See A097837 with A097838.

a(n-1), with a(-1) := 0, and b(n) := A099368(n) give the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 53*(7*a(n-1))^2 = +4, n >= 0. - Wolfdieter Lang, Jun 27 2013

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..584

Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.

R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (51,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n) = 51*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=51.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (51+7*sqrt(53))/2 and am := (51-7*sqrt(53))/2 = 1/ap.

G.f.: 1/(1-51*x+x^2).

MATHEMATICA

LinearRecurrence[{51, -1}, {1, 51}, 30] (* G. C. Greubel, Jan 12 2019 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(1/(1-51*x+x^2)) \\ G. C. Greubel, Jan 12 2019

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-51*x+x^2) )); // G. C. Greubel, Jan 12 2019

(Sage) (1/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019

(GAP) a:=[1, 51];; for n in [2..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019

CROSSREFS

Sequence in context: A210177 A210080 A218752 * A267786 A267733 A238603

Adjacent sequences:  A097833 A097834 A097835 * A097837 A097838 A097839

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 17:12 EDT 2022. Contains 356122 sequences. (Running on oeis4.)