This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097829 Partial sums of Chebyshev sequence S(n,15)= U(n,15/2)=A078364(n). 3
 1, 16, 240, 3585, 53536, 799456, 11938305, 178275120, 2662188496, 39754552321, 593656096320, 8865086892480, 132382647290881, 1976874622470736, 29520736689770160, 440834175724081665, 6582991899171454816 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = sum(S(k, 15), k=0..n) with S(k, 15) = U(k, 15/2) = A078364(k) Chebyshev's polynomials of the second kind. G.f.: 1/((1-x)*(1-15*x+x^2)) = 1/(1-16*x+16*x^2-x^3). a(n) = 16*a(n-1)-16*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=16. a(n) = 15*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1. a(n) = (S(n+1, 15) - S(n, 15) -1)/13. CROSSREFS Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3). Sequence in context: A103975 A162791 A060198 * A010559 A163092 A163441 Adjacent sequences:  A097826 A097827 A097828 * A097830 A097831 A097832 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 03:34 EDT 2019. Contains 328211 sequences. (Running on oeis4.)