This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097784 Partial sums of Chebyshev sequence S(n,10) = U(n,5) = A004189(n+1). 10
 1, 11, 110, 1090, 10791, 106821, 1057420, 10467380, 103616381, 1025696431, 10153347930, 100507782870, 994924480771, 9848737024841, 97492445767640, 965075720651560, 9553264760747961, 94567571886828051, 936122454107532550, 9266656969188497450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. Fortin, B-spline Toeplitz Inverse Under Corner Perturbations, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From N. J. A. Sloane, Oct 22 2012 Index entries for linear recurrences with constant coefficients, signature (11,-11,1). FORMULA a(n) = Sum_{k=0..n} S(k, 10) with S(k, 10) = U(k, 5) = A004189(k+1) Chebyshev's polynomials of the second kind. G.f.: 1/((1-x)*(1 - 10*x + x^2)) = 1/(1 - 11*x + 11*x^2 - x^3). a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) with n >= 2, a(-1)=0, a(0)=1, a(1)=11. a(n) = 10*a(n-1) - a(n-2) + 1 with n >= 1, a(-1)=0, a(0)=1. a(n) = (S(n+1, 10) - S(n, 10) - 1)/8. a(n) = (-6 + (27-11*sqrt(6))*(5 - 2*sqrt(6))^n + (5 + 2*sqrt(6))^n*(27 + 11*sqrt(6)))/48. - Colin Barker, Mar 05 2016 MATHEMATICA LinearRecurrence[{11, -11, 1}, {1, 11, 110}, 30] (* G. C. Greubel, May 24 2019 *) PROG (PARI) Vec(1/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jun 14 2015 (MAGMA) I:=[1, 11, 110]; [n le 3 select I[n] else 11*Self(n-1)-11*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019 (Sage) (1/((1-x)*(1 - 10*x + x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019 (GAP) a:=[1, 11, 110];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019 CROSSREFS Cf. A098296. Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3). Sequence in context: A115822 A162760 A190871 * A121031 A115804 A162987 Adjacent sequences:  A097781 A097782 A097783 * A097785 A097786 A097787 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)