This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097763 Number of different partitions of the set {1, 2, ..., n} into an even number of blocks such that each block contains at least 2 elements. 2
 0, 0, 0, 3, 10, 25, 56, 224, 1506, 9951, 57992, 315425, 1761552, 11022180, 78474748, 603715831, 4771273414, 38070877273, 309146434240, 2598546954268, 22887194502518, 211388690471531, 2031261113410564, 20121026325645745 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) = A000296(n) - A097762(n). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..500 FORMULA Exponential generating function: cosh(exp(x)-x-1). EXAMPLE a(6)=25 since we can partition a set of six elements into two non-singleton blocks, either of sizes four and two (15 ways) or three and three (10 ways); a(6)=15+10=25. MAPLE seq(coeff(series(cosh(exp(x)-x-1), x=0, 25), x^i)*i!, i=1..24); # second Maple program: with(combinat): b:= proc(n, i, t) option remember; `if`(n=0, t,       `if`(i<2, 0, add(multinomial(n, n-i*j, i\$j)/j!*        b(n-i*j, i-1, irem(t+j, 2)), j=0..n/i)))     end: a:= n-> b(n\$2, 1): seq(a(n), n=1..30);  # Alois P. Heinz, Mar 08 2015 MATHEMATICA multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i < 2, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1, Mod[t + j, 2]], {j, 0, n/i}]]]; a[n_] := b[n, n, 1];  Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz *) CROSSREFS Cf. A000296, A097762. Sequence in context: A047667 A192963 A000247 * A034506 A067988 A297186 Adjacent sequences:  A097760 A097761 A097762 * A097764 A097765 A097766 KEYWORD easy,nonn AUTHOR Isabel C. Lugo (izzycat(AT)gmail.com), Aug 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)