login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097762 Number of different partitions of the set {1, 2, ..., n} into an odd number of blocks such that each block contains at least 2 elements. 2
0, 1, 1, 1, 1, 16, 106, 491, 1919, 7771, 40261, 264892, 1871728, 12988977, 88413417, 612354549, 4492798353, 35529920764, 299329573882, 2625719242667, 23612697535919, 216981233646783, 2047084700918445, 19952633715109592 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..500

FORMULA

Exponential generating function: sinh(exp(x)-x-1).

EXAMPLE

a(6)=16 since we can partition a set of six labeled elements into one non-singleton block in 1 way and into three non-singleton blocks (each necessarily of size 2) in 15 ways; thus a(6)=1+15=16.

MAPLE

seq(coeff(series(sinh(exp(x)-x-1), x=0, 25), x^i)*i!, i=1..24);

# second Maple program:

with(combinat):

b:= proc(n, i, t) option remember; `if`(n=0, t,

      `if`(i<2, 0, add(multinomial(n, n-i*j, i$j)/j!*

       b(n-i*j, i-1, irem(t+j, 2)), j=0..n/i)))

    end:

a:= n-> b(n$2, 0):

seq(a(n), n=1..30);  # Alois P. Heinz, Mar 08 2015

CROSSREFS

Cf. A000296, A097763.

Sequence in context: A146211 A195806 A081588 * A083469 A224160 A224411

Adjacent sequences:  A097759 A097760 A097761 * A097763 A097764 A097765

KEYWORD

easy,nonn

AUTHOR

Isabel C. Lugo (izzycat(AT)gmail.com), Aug 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 27 16:32 EDT 2015. Contains 257093 sequences.