login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097690 Numerators of the continued fraction n-1/(n-1/...) [n times]. 9

%I #31 Apr 28 2021 02:00:12

%S 1,3,21,209,2640,40391,726103,15003009,350382231,9127651499,

%T 262424759520,8254109243953,281944946167261,10393834843080975,

%U 411313439034311505,17391182043967249409,782469083251377707328

%N Numerators of the continued fraction n-1/(n-1/...) [n times].

%C The n-th term of the Lucas sequence U(n,1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,1) are relatively prime.

%H Alois P. Heinz, <a href="/A097690/b097690.txt">Table of n, a(n) for n = 1..386</a>

%H Pascual Jara and Miguel L. Rodríguez, <a href="http://amj-math.com/wp-content/uploads/2020/12/AMJ2020-vol7iss2.pdf#page=6">Solving quadratic congruences</a>, Arhimede Math. J. (2020) Vol. 7, No. 2, 105-120.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LucasSequence.html">Lucas Sequence</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.

%F a(n) = [x^n] 1/(1 - n*x + x^2). - _Paul D. Hanna_, Dec 27 2012

%F a(n) = y(n,n), where y(m+1,n) = n*y(m,n) - y(m-1,n) with y(0,n)=1, y(1,n)=n. - _Benedict W. J. Irwin_, Nov 05 2016

%F From _Seiichi Manyama_, Mar 03 2021: (Start)

%F a(n) = U{n,n/2) where U{n,x) is a Chebyshev polynomial of the second kind.

%F a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (n-2)^k * binomial(n+1+k,2*k+1). (End)

%e a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56.

%t Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}]

%t Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* _Benedict W. J. Irwin_, Nov 05 2016 *)

%o (Sage) [lucas_number1(n,n-1,1) for n in range(19)] # _Zerinvary Lajos_, Jun 25 2008

%o (PARI) {a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ _Paul D. Hanna_, Dec 27 2012

%o (PARI) a(n) = polchebyshev(n, 2, n/2); \\ _Seiichi Manyama_, Mar 03 2021

%o (PARI) a(n) = sum(k=0, n, (n-2)^k*binomial(n+1+k, 2*k+1)); \\ _Seiichi Manyama_, Mar 03 2021

%Y Cf. A084844, A084845, A097691 (denominators), A179943, A323118.

%K easy,frac,nonn

%O 1,2

%A _T. D. Noe_, Aug 19 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 09:14 EDT 2024. Contains 371268 sequences. (Running on oeis4.)