The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097690 Numerators of the continued fraction n-1/(n-1/...) [n times]. 4
 1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The n-th term of the Lucas sequence U(n,1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,1) are relatively prime. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..386 Eric Weisstein's World of Mathematics, Lucas Sequence FORMULA a(n) = [x^n] 1/(1 - n*x + x^2). - Paul D. Hanna, Dec 27 2012 a(n) = y(n,n), where y(m+1,n) = n*y(m,n) - y(m-1,n) with y(0,n)=1, y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016 EXAMPLE a(4) = 209 because 4-1/(4-1/(4-1/4)) = 209/56. MATHEMATICA Table[s=n; Do[s=n-1/s, {n-1}]; Numerator[s], {n, 20}] Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == n*y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 05 2016 *) PROG (Sage) [lucas_number1(n, n-1, 1) for n in range(19)] # Zerinvary Lajos, Jun 25 2008 (PARI) {a(n)=polcoeff(1/(1-n*x+x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012 CROSSREFS Cf. A084844, A084845, A097691 (denominators). Sequence in context: A242635 A136223 A114469 * A037967 A123691 A087918 Adjacent sequences:  A097687 A097688 A097689 * A097691 A097692 A097693 KEYWORD easy,frac,nonn AUTHOR T. D. Noe, Aug 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 08:53 EDT 2020. Contains 336197 sequences. (Running on oeis4.)