login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097682 E.g.f.: (1/(1-x^8))*exp( 8*sum_{i>=0} x^(8*i+1)/(8*i+1) ) for an order-8 linear recurrence with varying coefficients. 9
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16817536, 137443328, 1215668224, 13131579392, 186802241536, 3194809745408, 57299125141504, 1002518381330432, 16747075923705856, 268695698674024448, 4294396462470529024 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Limit_{n->inf} n*n!/a(n) = 8*c = 0.0259289826... where c = 8*exp(psi(1/8)+EulerGamma) = 0.0032411228...(A097673) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link).

REFERENCES

Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116.  Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

LINKS

Table of n, a(n) for n=0..18.

Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, Preprint 2004.

Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.

Eric Weisstein's World of Mathematics, Digamma Function.

FORMULA

For n>=8: a(n) = 8*a(n-1) + n!/(n-8)!*a(n-8); for n<8: a(n)=8^n. E.g.f.: 1/(1-x^8)*(1+x)/(1-x)* ((1+sqrt(2)*x+x^2)/(1-sqrt(2)*x+x^2))^(1/sqrt(2))* exp(sqrt(2)*atan(sqrt(2)*x/(1-x^2))+2*atan(x)).

EXAMPLE

The sequence {1, 8, 64/2!, 512/3!, 4096/4!, 32768/5!, 262144/6!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link).

PROG

(PARI) {a(n)=n!*polcoeff(1/(1-x^8)*exp(8*sum(i=0, n, x^(8*i+1)/(8*i+1)))+x*O(x^n), n)}

(PARI) a(n)=if(n<0, 0, if(n==0, 1, 8*a(n-1)+if(n<8, 0, n!/(n-8)!*a(n-8))))

CROSSREFS

Cf. A097673, A097677-A097681.

Sequence in context: A125908 A206454 A001018 * A050738 A046238 A046252

Adjacent sequences:  A097679 A097680 A097681 * A097683 A097684 A097685

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 14 17:44 EDT 2018. Contains 313751 sequences. (Running on oeis4.)