login
E.g.f.: (1/(1-x^6))*exp( 6*sum_{i>=0} x^(6*i+1)/(6*i+1) ) for an order-6 linear recurrence with varying coefficients.
5

%I #15 Feb 27 2021 13:20:38

%S 1,6,36,216,1296,7776,47376,314496,2612736,28740096,368395776,

%T 4796983296,60300205056,750367328256,10151357239296,164475953381376,

%U 3110937349718016,61410199093641216,1174438559356747776

%N E.g.f.: (1/(1-x^6))*exp( 6*sum_{i>=0} x^(6*i+1)/(6*i+1) ) for an order-6 linear recurrence with varying coefficients.

%C Limit_{n->inf} n*n!/a(n) = 6*c = 0.1140186893... where c = 6*exp(psi(1/6)+EulerGamma) = 0.0190031148...(A097671) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link).

%D Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

%D A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

%H Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, preprint 2004.

%H Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>.

%F For n>=6: a(n) = 6*a(n-1) + n!/(n-6)!*a(n-6); for n<6: a(n)=6^n. E.g.f.: 1/(1-x^6)*(1+x)/(1-x)*sqrt((1+x+x^2)/(1-x+x^2))* exp(sqrt(3)*atan(sqrt(3)*x/(1-x^2))).

%e The sequence {1, 6, 36/2!, 216/3!, 1296/4!, 7776/5!, 47376/6!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link).

%o (PARI) {a(n)=n!*polcoeff(1/(1-x^6)*exp(6*sum(i=0,n,x^(6*i+1)/(6*i+1)))+x*O(x^n),n)}

%o (PARI) a(n)=if(n<0,0,if(n==0,1,6*a(n-1)+if(n<6,0,n!/(n-6)!*a(n-6))))

%Y Cf. A097671, A097677-A097680, A097682-A097682.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 01 2004