This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097566 Number of partitions p of n for which Odd(p) = Odd(p') (mod 4), where p' is the conjugate of p. 3
 1, 1, 0, 1, 5, 5, 1, 5, 20, 20, 6, 20, 65, 65, 25, 66, 185, 185, 85, 190, 481, 482, 250, 501, 1165, 1170, 666, 1230, 2666, 2685, 1646, 2850, 5827, 5887, 3830, 6303, 12251, 12415, 8487, 13395, 24912, 25323, 18052, 27507, 49215, 50176, 37072, 54832, 94781, 96905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Odd(p) is the number of odd parts of a partition p. a(n) is denoted t(n) in Problem 10969. LINKS George E. Andrews, On a Partition Function of Richard Stanley. M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Disc. Math., 309 (2009), 151-175. (See t(n) p. 151. Note that there is a typo in the g.f. for f(n) - see A144558.) [Added by N. J. A. Sloane, Jan 25 2009.] R. P. Stanley, Problem 10969, Amer. Math. Monthly, 109 (2002), 760. as mentioned in link. FORMULA From Michael Somos, May 04 2011: (Start) Expansion of q^(1/24) * eta(q^2)^2 * eta(q^16)^5 / (eta(q) * eta(q^4)^5 * eta(q^32)^2) in powers of q. Expansion of phi(x^8) / (phi(x^2) * f(-x)) in powers of x where phi(), f() are Ramanujan theta functions. Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, -1, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 1, ...]. G.f.: theta_3(x^8) / (theta_3(x^2) * Product_{k>0} (1 - x^k)) = A000041(x) * A112128(x^2). a(n) = (A000041(n) + A085261(n)) / 2. (End) EXAMPLE G.f. = 1 + x + x^3 + 5*x^4 + 5*x^5 + x^6 + 5*x^7 + 20*x^8 + 20*x^9 + 6*x^10 + ... G.f. = 1/q + q^23 + q^71 + 5*q^95 + 5*q^119 + q^143 + 5*q^167 + 20*q^191 + 20*q^215 + ... a(5) = 5 because only the partitions {5}, {3,2}, {3,1,1}, {2,2,1}, {1,1,1,1,1} have conjugates resp. {1,1,1,1,1}, {2,2,1}, {3,1,1}, {3,2}, {5} with matching counts of odd elements (resp. (1,5), (1,1), (3,3), (1,1), (5,1) being congruent modulo 4 ). MAPLE with(combinat); t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1, q, 100): f:=n->coeff(t2, q, n); p:=numbpart; t:=n->(p(n)+f(n))/2; # N. J. A. Sloane, Jan 25 2009 MATHEMATICA fStanley[n_Integer]:=Product[(1+q^(2i-1))/(1-q^(4i))/(1+q^(4i-2))^2, {i, n}]; Table[PartitionsP[n]/2+1/2*Coefficient[Series[fStanley[n], {q, 0, n+1}], q^n], {n, 64}] or Table[Count[Partitions[n], q_/; Mod[Count[q, w_/; OddQ[w]]- Count[TransposePartition[q], w_/; OddQ[w]], 4]===0], {n, 24}] a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^8] / (EllipticTheta[ 3, 0, x^2] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Jun 01 2014 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^32 + A)^2), n))}; /* Michael Somos, May 04 2011 */ CROSSREFS Cf. A000041, A085261, A097566, A112128, A190101. Sequence in context: A198740 A082956 A190101 * A014287 A154945 A254347 Adjacent sequences:  A097563 A097564 A097565 * A097567 A097568 A097569 KEYWORD easy,nonn AUTHOR Wouter Meeussen, Aug 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.