login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097564 a(0)=0, a(1)=1; for n>1, a(n) = (a(n-1) mod 2)*a(n-1) + a(n-2). 1
0, 1, 1, 2, 1, 3, 4, 3, 7, 10, 7, 17, 24, 17, 41, 58, 41, 99, 140, 99, 239, 338, 239, 577, 816, 577, 1393, 1970, 1393, 3363, 4756, 3363, 8119, 11482, 8119, 19601, 27720, 19601, 47321, 66922, 47321, 114243, 161564, 114243, 275807, 390050, 275807, 665857 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The sequences a(2), a(5), ... a(1+3*n) ... and a(4), a(7), ... a(4 + 3n) ... are both A001333 (numerators of continued fraction convergents to sqrt(2)). The sequence a(0), a(3), a(6), ... a(3+3*n) ... is twice A000129 (the Pell nos. or the denominators of continued fraction convergents to sqrt(2)., also is A052542 starting w/ offset 1.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

D. Panario, M. Sahin, Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.

Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,1).

FORMULA

From Colin Barker, Jun 01 2016: (Start)

a(n) = 2*a(n-3)+a(n-6) for n>5.

G.f.: x*(1+x+2*x^2-x^3+x^4) / (1-2*x^3-x^6). (End)

MATHEMATICA

nxt[{a_, b_}]:={b, Mod[b, 2]*b+a}; NestList[nxt, {0, 1}, 50][[All, 1]] (* or *) LinearRecurrence[{0, 0, 2, 0, 0, 1}, {0, 1, 1, 2, 1, 3}, 50] (* Harvey P. Dale, Aug 15 2017 *)

PROG

(PARI) concat(0, Vec(x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6) + O(x^100))) \\ Colin Barker, Jun 02 2016

(MAGMA) [n le 2 select n-1 else (Self(n-1) mod 2)*Self(n-1)+Self(n-2): n in [1..50]]; Bruno Berselli, Jun 02 2016

CROSSREFS

Sequence in context: A133310 A077608 A002124 * A128270 A151550 A097003

Adjacent sequences:  A097561 A097562 A097563 * A097565 A097566 A097567

KEYWORD

nonn,easy

AUTHOR

Gerald McGarvey, Aug 27 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 23 21:16 EDT 2017. Contains 292391 sequences.