login
A097555
Number of positive words of length n in the monoid Br_8 of positive braids on 9 strands.
7
1, 8, 45, 205, 831, 3133, 11294, 39585, 136302, 464026, 1568151, 5273999, 17681042, 59149925, 197598856, 659479754, 2199585548, 7333198205, 24441067317, 81444567492, 271360676916, 904051477063, 3011711782025, 10032660556567, 33420042561972
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 +x^2)^6 /(1 -8*x +25*x^2 -45*x^3 +59*x^4 -57*x^5 +41*x^6 -21*x^7 +7*x^8 -x^9).
MATHEMATICA
LinearRecurrence[{8, -25, 45, -59, 57, -41, 21, -7, 1}, {1, 8, 45, 205, 831, 3133, 11294, 39585, 136302, 464026, 1568151, 5273999, 17681042}, 41] (* G. C. Greubel, Apr 20 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) )); // G. C. Greubel, Apr 20 2021
(Sage)
def A097555_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) ).list()
A097555_list(40) # G. C. Greubel, Apr 20 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
D n Verma, Aug 16 2004
EXTENSIONS
Edited and extended by Max Alekseyev, Jun 17 2011
STATUS
approved