login
A097534
Least k such that k*P(n)#-P(n+10) and k*P(n)#+P(n+10) are both primes with P(i)=i-th prime and P(i)#=i-th primorial.
0
18, 7, 2, 3, 3, 5, 1, 4, 5, 9, 8, 57, 88, 10, 7, 5, 270, 70, 4, 93, 39, 77, 13, 81, 3, 79, 196, 132, 561, 1009, 121, 184, 72, 53, 470, 140, 260, 111, 252, 43, 98, 107, 692, 747, 409, 43, 68, 511, 1957, 452, 913, 1591, 495, 76, 539, 87, 759, 1047, 875, 581, 510, 218, 704
OFFSET
1,1
MATHEMATICA
Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1, p = Primorial[n], q = Prime[n + 10]}, While[k*p - q < 2 || !PrimeQ[k*p - q] || !PrimeQ[k*p + q], k++ ]; k]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Aug 31 2004 *)
CROSSREFS
Sequence in context: A221351 A078085 A069951 * A040310 A068610 A264389
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Aug 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2004
STATUS
approved