%I #7 Mar 28 2015 22:36:58
%S 16,6,2,2,10,2,2,1,3,17,14,2,66,22,60,26,56,10,47,27,27,184,19,198,
%T 279,102,329,55,106,57,16,383,193,81,41,84,192,132,209,372,206,566,
%U 237,39,13,252,113,331,754,50,794,85,27,676,66,44,103,19,349,693,543,109,682
%N Least k such that k*P(n)#-P(n+9) and k*P(n)#+P(n+9) are both primes with P(i)=i-th prime and P(i)#=i-th primorial.
%t Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1, p = Primorial[n], q = Prime[n + 9]}, While[k*p - q < 2 || !PrimeQ[k*p - q] || !PrimeQ[k*p + q], k++ ]; k]; Table[ f[n], {n, 63}] (* _Robert G. Wilson v_, Aug 31 2004 *)
%K easy,nonn
%O 1,1
%A _Pierre CAMI_, Aug 27 2004
%E More terms from _Robert G. Wilson v_, Aug 31 2004