login
A097533
Least k such that k*P(n)#-P(n+9) and k*P(n)#+P(n+9) are both primes with P(i)=i-th prime and P(i)#=i-th primorial.
0
16, 6, 2, 2, 10, 2, 2, 1, 3, 17, 14, 2, 66, 22, 60, 26, 56, 10, 47, 27, 27, 184, 19, 198, 279, 102, 329, 55, 106, 57, 16, 383, 193, 81, 41, 84, 192, 132, 209, 372, 206, 566, 237, 39, 13, 252, 113, 331, 754, 50, 794, 85, 27, 676, 66, 44, 103, 19, 349, 693, 543, 109, 682
OFFSET
1,1
MATHEMATICA
Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1, p = Primorial[n], q = Prime[n + 9]}, While[k*p - q < 2 || !PrimeQ[k*p - q] || !PrimeQ[k*p + q], k++ ]; k]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Aug 31 2004 *)
CROSSREFS
Sequence in context: A233000 A070581 A057995 * A040244 A084527 A084517
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Aug 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 31 2004
STATUS
approved