This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097463 Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents. 0
 0, 1, 2, 11, 101, 21, 4, 12, 10001, 2001, 111, 22, 301, 1101, 100000001, 200001, 1000000001, 211, 11001, 1011, 32, 110001, 1000000000001, 30001, 51, 202, 1100001, 1000000000000001, 23, 4001, 1201, 101001, 3000001, 110000001, 200000000001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS If P(n)-1 = P(1)^a * P(2)^b *....* P(j)^k then a(n) = ab...k. LINKS EXAMPLE 3-1=2^1, so a(2)=1. 5-1=2^2, so a(3)=2. 7-1=2^1*3^1, so a(4)=11. 23=(2^1)*(11^1)+1. So a(9) = 10001. 37 = 36 + 1 = 2^2*3^2 + 1, so 37 becomes 22 (a=2,b=2). PROG (PARI) {forprime(p=2, 150, f=factor(p-1); j=1; q=2; s="0"; while(j<=matsize(f)[1], if(q==f[j, 1], s=concat(s, f[j, 2]); j++, s=concat(s, 0)); q=nextprime(q+1)); print1(eval(s), ", "))} \\ Klaus Brockhaus, Apr 25 2005 CROSSREFS Cf. A037916. Sequence in context: A038371 A236174 A003021 * A263607 A083394 A263611 Adjacent sequences:  A097460 A097461 A097462 * A097464 A097465 A097466 KEYWORD nonn,base AUTHOR Pierre CAMI, Aug 23 2004 EXTENSIONS More terms from Klaus Brockhaus, Apr 25 2005 a(9) corrected by Dennis (tuesdayist(AT)juno.com), Mar 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)