

A097418


Triangle of coefficients of a certain sequence of polynomials f_n(x) arising in connection with deformations of coordinate rings of type D Kleinian singularities.


1



1, 2, 0, 3, 2, 0, 4, 8, 8, 0, 5, 20, 56, 56, 0, 6, 40, 216, 608, 608, 0, 7, 70, 616, 3352, 9440, 9440, 0, 8, 112, 1456, 12928, 70400, 198272, 198272, 0, 9, 168, 3024, 39696, 352768, 1921152, 5410688, 5410668, 0, 10, 240, 5712, 103872, 1364800, 12129664, 66057856
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

f_n(x) has the property that whenever (a,b) is a pair of complex numbers satisfying 2ab = a^2 + 2a + b^2 + 2b, we have f_n(a) + f_n(b) = 2(a^n  b^n)/(ab) (interpreted as 2na^(n1) if a=b). Using the pairs (0,0), (0,2), (2,6), (6,12), (12,20)... this enables us to successively deduce the values of f_n(0), f_n(2),... (and this of course determines f_n(x)). There may be no simpler characterization.


REFERENCES

P. Boddington, Ph.D. thesis, University of Warwick (anticipated 2005).


LINKS

Table of n, a(n) for n=1..52.


EXAMPLE

The array begins
1
2 0
3 2 0
4 8 8 0
corresponding to the polynomials f_1(x) = 1, f_2(x) = 2x, f_3(x) = 3x^2 + 2x, f_4(x) = 4x^3 + 8x^2 + 8x.


CROSSREFS

Sequence in context: A269133 A143324 A287416 * A154752 A271868 A194354
Adjacent sequences: A097415 A097416 A097417 * A097419 A097420 A097421


KEYWORD

nonn,tabl


AUTHOR

Paul Boddington, Aug 20 2004


STATUS

approved



