This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097368 Least term in row n of the Fibonacci regression array in A097367. 4
 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 4, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 4, 5, 1, 5, 4, 3, 6, 3, 5, 5, 2, 6, 4, 4, 6, 2, 6, 5, 3, 7, 4, 5, 6, 1, 7, 5, 4, 7, 3, 6, 6, 3, 8, 5, 5, 7, 2, 7, 6, 4, 8, 4, 6, 7, 2, 8, 6, 5, 8, 3, 7, 7, 4, 9, 5, 6, 8, 1, 8, 7, 5, 9, 4, 7, 8, 3, 9, 6, 6, 9, 3, 8, 8, 5, 10, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS From Robert Israel, Jan 20 2018: (Start) a(n) = 1 if and only if n is in A000045. a(n) = 2 if and only if n >= 4 is in A000032 or 2*A000045. a(m*n) <= m*a(n). (End) LINKS Robert Israel, Table of n, a(n) for n = 2..10000 EXAMPLE Row 8 of the array in A097367 is 7 6 5 4 1 4 6, of which the least term is T(8,5)=1. MAPLE T:= proc(n, k)   local s, t, u;    s:= n; t:= k;    do      u:= s-t;      if u <= 0 then return t fi;      s:= t;      t:= u;    od; end proc: f:= n -> min(seq(T(n, k), k=1..n-1)): map(f, [\$2..200]); # Robert Israel, Jan 19 2018 MATHEMATICA f[n_] := Fibonacci[n]; d[n_, k_, 1] := n; d[n_, k_, 2] := k; d[n_, k_, j_] := ((-1)^j) (k*f[j - 1] - n*f[j - 2]); s[n_, k_] := Select[Range[100], d[n, k, # + 1] <= 0 &, 1]; t = Table[d[n, k, s[n, k]], {n, 2, 20}, {k, 1, n - 1}];  (* A097367 array *) Flatten[t]  (* A097367 sequence *) Table[Min[Flatten[Table[d[n, k, s[n, k]], {k, 1, n - 1}]]], {n, 2, 100}]  (* A097368 *) (* Clark Kimberling, Oct 14 2016 *) CROSSREFS Cf. A000032, A000045, A097367, A097369. Sequence in context: A109967 A000119 A286326 * A271900 A194083 A109699 Adjacent sequences:  A097365 A097366 A097367 * A097369 A097370 A097371 KEYWORD nonn,look AUTHOR Clark Kimberling, Aug 09 2004 EXTENSIONS a(46) = 6 inserted by Clark Kimberling, Oct 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:47 EDT 2019. Contains 323539 sequences. (Running on oeis4.)