

A097368


Least term in row n of the Fibonacci regression array in A097367.


3



1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 4, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 4, 5, 1, 5, 4, 3, 6, 3, 5, 5, 2, 6, 4, 4, 6, 2, 6, 5, 3, 7, 4, 5, 6, 1, 7, 5, 4, 7, 3, 6, 6, 3, 8, 5, 5, 7, 2, 7, 6, 4, 8, 4, 6, 7, 2, 8, 6, 5, 8, 3, 7, 7, 4, 9, 5, 6, 8, 1, 8, 7, 5, 9, 4, 7, 8, 3, 9, 6, 6, 9, 3, 8, 8, 5, 10, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


LINKS

Table of n, a(n) for n=2..107.


EXAMPLE

Row 8 of the array in A097367 is 7 6 5 4 1 4 6, of which the least term is T(8,5)=1.


MATHEMATICA

f[n_] := Fibonacci[n]; d[n_, k_, 1] := n; d[n_, k_, 2] := k;
d[n_, k_, j_] := ((1)^j) (k*f[j  1]  n*f[j  2]);
s[n_, k_] := Select[Range[100], d[n, k, # + 1] <= 0 &, 1];
t = Table[d[n, k, s[n, k]], {n, 2, 20}, {k, 1, n  1}]; (* A097367 array *)
Flatten[t] (* A097367 sequence *)
Table[Min[Flatten[Table[d[n, k, s[n, k]], {k, 1, n  1}]]], {n, 2, 100}] (* A097368 *)
(* Clark Kimberling, Oct 14 2016 *)


CROSSREFS

Cf. A000045, A097367, A097369.
Sequence in context: A256660 A109967 A000119 * A271900 A194083 A109699
Adjacent sequences: A097365 A097366 A097367 * A097369 A097370 A097371


KEYWORD

nonn


AUTHOR

Clark Kimberling, Aug 09 2004


EXTENSIONS

a(46) = 6 inserted by Clark Kimberling, Oct 14 2016


STATUS

approved



